Wilson, Tabatha

From: Gilliam, Allen

Sent: Thursday, August 21, 2014 1:31 PM

To: jrausch@reawire.com; mstowe@algonquin-industries.com; mstowe@reawire.com

Cc: Fuller, Kim; Wilson, Tabatha

Subject: AR0021580_Rea ARP000020 March 2014 semi annual Pretreatment report with ADEQ

reply_20140821

Attachments: REA's March 2014 Semi annual Pretreatment Report-tw.pdf

John,

Apologies for the tardy response to Rea's semi-annual Pretreatment report. Further, without knowing Rea's processes, discharge practices and the data provided on Rea's March 2014 semi-annual report, this office was confused not knowing the rationale for your production based (converted to concentration) limits in 40 CFRs 467 and 468.

Based on our phone conversation today you indicated there was no regulated wastewater discharged to the City of Osceola's collection system during the six (6) previous months up and through March 2014.

The analyticals attached to the report were not necessary. Do you have an idea whose requirement it was for this sampling when there is no discharge to the City?

You had also indicated there has been no regulated wastewater discharged to the City since last March. Sampling/analyzing the pollutants regulated under 40 CFRs 467 & 468 is not necessary for your September semi-annual report. A simple letter certifying something to the effect of zero discharge to the City will suffice.

Please notify this office immediately of Rea's future process/equipment changes to achieve zero discharge.

If there are further questions or concerns feel free to contact this office.

Sincerely,

Allen Gilliam ADEQ State Pretreatment Coordinator 501.682.0625

E/NPDES/NPDES/Pretreatment/Reports

Rea Magnet Wire Company, Inc.
Osceola Plant
1800 US Hwy 61 South
Osceola, AR 72370

Phone (870) 622-4404

March 28, 2014

Arkansas Department of Environmental Quality Mr. Allen Gilliam 5301 Northshore Drive North Little Rock, AR 72118-5328 501-682-0625

Re: Submittal of Semi-Annual Report, Osceola Plant

Dear Mr. Gilliam:

Please find enclosed the above referenced document and copies of the analytical results of the sampling used to determine compliance.

Please note the following:

- A revised version of ADEQ's semi-annual report form was used. The form was revised to clarify information for both ADEQ and Algonquin. The form meets all of the informational requirements of 40 CFR 403.12(e).
- 2. Limitations for batch discharges were calculated using the production data from a specific time period beginning with the date of the most recent batch discharge and ending with the date the samples (reported herein) were collected. Production data for partial (split) months were prorated.

If you need additional information, please contact me at (870) 622-4425.

Sincerely,

John Rausch

Operations Manager (Plant Manager), Osceola Plant

Rea Magnet Wire Company, Inc.

Enclosures

cc:

James Carlock, Superintendent

Osceola Water Dept

PO Box 443

Osceola, AR 72370

SEMI-ANNUAL REPORT FOR USERS REGULATED BY THE AI & Cu FORMING CATEGORIES

(1) IDENTIFYING IN	FORMATION		
A. LEGAL NAME & MAI	LING ADDRESS		B. FACILITY & LOCATION ADDRESS
Rea Magnet Wire, Algonquin Industries, Osceola Plant 1800 Highway 61 South Osceola, AR 72370			Rea Magnet Wire, Algonquin Industries, Osceola Plant 1800 Highway 61 South Osceola, AR 72370
C. FACILITY CONTACT	: John Rausch (jrausch)	@reawire.com)	TELEPHONE NUMBER: 870-622-4413
(2) REPORTING PER	LIODFISCAL YEAR		2013 (Both Semi-Annual Reports to Cover Fiscal Year)
A. MONTHS WHICH REP	ORTS ARE DUE		B. PERIOD COVERED BY THIS REPORT
September &	March		FROM: September 30, 2013 - March 31, 2014
(3) DESCRIPTION O	F OPERATION		
	sses per 40 CFR Part 467 (Ale (Copper) Subpart A	uminum) Subpart A & C and	B. CHANGES: SUMMARIZE ANY CHANGES IN THE REGULATED PROCESSES SINCE THE LASS REPORT. ATTACH AN ADDITIONAL SHEET IF THE SPACE BELOW I INADEQUATE. PROVIDE A NEW SCHEMATIC IF APPROPRIATE.
PROCESS	PRODUCTION- OFF/LB	PRODUCTION DAYS ¹	
Rolled Aluminum (§467.15 Solution Heat Treatment)	754,979	7/1/2011 – 3/19/2014 992 days	
Extruded Aluminum (§467.35 Core Die Cleaning)	1,461,351	9/30/2013 – 3/19/2014 170	
Extruded Aluminum (§467.35 Press Heat Treatment) C300 (§467.35 Press Heat	816,726 644,625	9/30/2013 – 3/19/2014 170 9/30/2013 – 3/19/2014	
Rolled Copper (§468.14(d) Solution Heat Treatment)	9,228,353	170 7/1/2011 – 3/19/2014 992 days	
Extruded Copper (§468.14(k) Pickling	2,086,174	9/30/2013 – 3/19/2014	
Rinse) C285 (§468.14(m) Pickling	2,086,174	170 9/30/2013 - 3/19/2014	
Bath) C285 (§468.14(e) Extrusion Heat Treatment) C285	2,086,174	170 9/30/2013 – 3/19/2014 170	
¹ The entry for "Production Days" dates of the batch discharges or in operation has a continuous dischard. C. Number of Regular Emplo	-X	nd pickling and rinse operations are opling. Only the Core Die Cleaning	D. [Reserved]

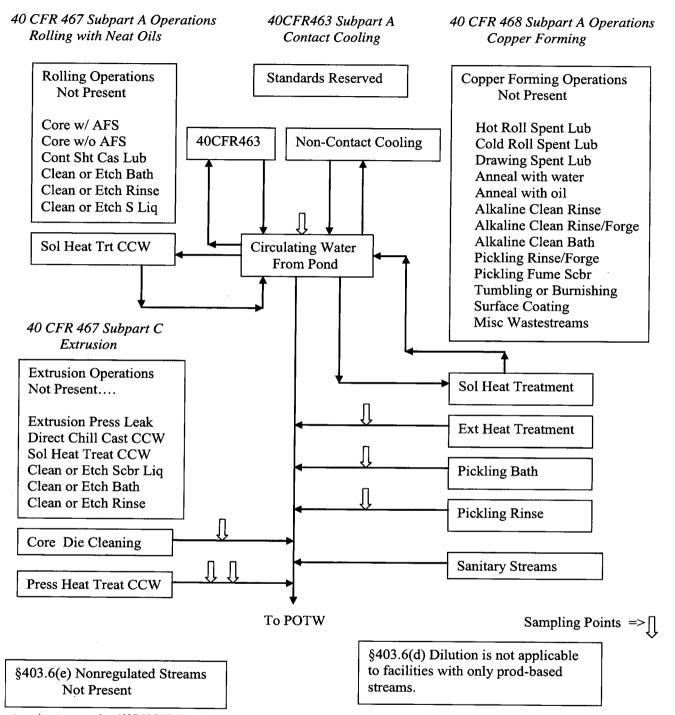
(4)	FLOW MEASUREMENT				
В. П	NDIVIDUAL PROCESS WASTEST	REAMS DISCHAR	GED TO POTW		
	Operation	Average Flow Rate (gpd)	Number of Discharge Days	Batch Discharge Volume	Type of Discharge
	Process:				
	§467.15 Solution Heat Treatment ¹ (Aluminum Rolling)	NA	NA	26,667 gallons discharged to the POTW July 1, 2011 (most recent discharge)	Batch discharge from recirculation pond
	§467.35 Cleaning or Etching Rinse (Aluminum Extrusion)	NA	NA	Not in service	Batch discharge to either POTW or waste oil tank
	467.35 Cleaning or Etching Bath (Aluminum Extrusion)	NA	NA	Not in service	Batch discharge to either POTW or waste oil tank
	§467.35 Press Heat Treatment (Aluminum Extrusion)	NA	NA	Not in service	Batch discharge from Aluminum Extrusion (C-350) Product Cooling Tank
	§468.14(m) Pickling Bath (Copper Extrusion)	2.35	170	Two 200-gallon tanks discharged September 30, 2013	Batch discharge to either POTW or waste oil tank
	§468.14(k) Pickling Rinse (Copper Extrusion)	NA	NA	Not in service	Batch discharge to either POTW or waste oil tank
	§468.14(e) Extrusion Heat Treatment (Copper Extrusion)	1.18	170	One 200-gallon tank discharged September 30, 2013	Batch discharge from Copper Extrusion (C-285) Product Cooling Tank
	§467.35 Core-Die Cleaner (Aluminum Extrusion)	20	N/A	N/A	Intermittent
	§467.35 Press Heat Treatment (Aluminum Extrusion)	7.65	170	One 1,300-gallon tank, discharged September 30, 2013	Batch discharge from Aluminum Extrusion (C-300 & C-500) Cooling Water Tank
	§468.14(d) Solution Heat Treatment ¹ (Copper Forming [Rolling])	NA	NA	26,667 gallons discharged to the POTW July 1, 2011 (most recent discharge)	Batch discharge from recirculation pond
ľ	§403.6(e) Unregulated:	···			
	Air compressor condensate blowdown	10 (estimate)	144	N/A	Intermittent
	Steam clean forklift wash area	5 (estimate)	144	N/A	Intermittent
	§403.6(e) Dilute:			:	
	Cooling water ¹	NA	NA	26,667 gallons discharged to the POTW July 1, 2011 (most recent discharge)	Batch discharge from recirculation pond
	Sanitary	6,000 (estimate)	144	N/A	Continuous
1	The 80,000 gallon batch discharge is comprised of	several regulated and diluted s	source waters.		
(5) N	MEASURMENT OF POLLU	TANTS	,		
A. TY	PE OF TREATMENT SYSTEM C Neutralization Chemical Precipitation and Chromium Reduction Cyanide Destruction Other		CABLE BLOCK	B. COMMENTS ON TREATMENT SY	STEM
×	None				

C. THE INDUSTRIAL USER MUST PERFORM SAMPLING AND ANALYSIS ON THE EFFLUENT FROM ALL REGULATED PROCESSES-CORE & ANCILLARY-(AFTER TREATMENT, IF APPLICABLE). ATTACH THE LAB ANALYSIS, WHICH SHOWS A MAXIMUM, TABULATE ALL THE ANALYSICAL DATA COLLECTED DURING THE REPORT PERIOD IN THE SPACE PROVIDED BELOW. ZERO CONCENTRATIONS ARE NOT ACCEPTABLE; LIST THE DETECTION LIMIT IF CONCENTRATION WAS BELOW DETECTION LIMIT.

Concentrations (mg/l)	Cr	Cu	Pb	Ni	Zn	TTO	O&G	CN
C-500 Cooling Water Tank (Aluminum Extrusion) Allowable Concentrations	NA	NA	NA	NA	NA	NA	NA	NA
C-500 Cooling Water Tank Measured Concentrations	NA	NA	NA	NA	NA	NA	NA	NA
C-300 Cooling Water Tank (Aluminum Extrusion) Allowable Concentrations	120.8	NA	NA	NA	408.0	NA	17,300	81.6
C-300 Cooling Water Tank Measured Concentrations	< 0.007	NA	NA	NA	0.039	NA	<5	<0.01
Die Cleaning Allowable Concentrations ¹	8 3.1	NA	NA	NA	25 10	NA	928 453	5 2
Die Cleaning Measured Concentrations	0.008	NA	NA	NA	0.20	NA	<5	<0.01
Pond Allowable Concentration	2.023	8.935	1.148	11.342	6.864	NA	167	0.283
Pond Measured Concentration	< 0.007	0.31	<0.04	<0.01	0.059	NA NA	<5	<0.01
C-350 Aluminum Extrusion Tank 1 (Cleaning or Etching Bath)	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA
C-350 Aluminum Extrusion Tank 1 Measured Concentration	NA	NA	NA	NA	NA	NA	NA	NA
C-350 Aluminum Extrusion Tank 2 (Cleaning or Etching Rinse)	NA	NA	NA	NA	NA	NA	NA	NA
C-350 Aluminum Extrusion Tank 2 Measured Concentration	NA	NA	NA	NA	NA	NA	NA	NA
C-350 Aluminum Extrusion Tank 3 (Cleaning or Etching Rinse)	NA	NA	NA	NA	NA	NA	NA	NA
C-350 Aluminum Extrusion Tank 3 Measured Concentration	NA	NA	NA	NA	NA	NA	NA	NA
C-350 Aluminum Extrusion Tank 4 (Cleaning or Etching Bath)	NA	NA	NA	NA	NA	NA	NA	NA
C-350 Aluminum Extrusion Tank 4 Measured Concentration	NA	NA	NA	NA	NA	NA ———	NA	NA
C-350 Cooling Water Tank (Aluminum Extrusion) Allowable Concentrations	28.6	NA	NA	NA	96.6	NA	4,096	19.3
C-350 Cooling Water Tank Measured Concentrations	<0.007	NA	NA	NA	0.015	NA	<5	<0.01
C-285 Copper Extrusion Tank 1 (Pickling Bath)	NA	NA	NA	NA	NA	NA	NA	NA
C-285 Copper Extrusion Tank 1 Measured Concentration	NA	NA	NA	NA	NA	NA	NA	NA
C-285 Copper Extrusion Tank 2 (Pickling Rinse)	NA	NA	NA	NA	NA	NA	NA	NA
C-285 Copper Extrusion Tank 2 Measured Concentration	NA	NA	NA	NA	NA	NA	NA	NA
C-285 Copper Extrusion Tank 3 (Pickling Bath)	NA	NA	NA	NA	NA	NA	NA	NA
C-285 Copper Extrusion Tank 3 Measured Concentration	NA	NA	NA	NA	NA	NA	NA	NA
C-285 Copper Extrusion Tank 4 Pickling Rinse)	NA	NA	NA	NA	NA	NA	NA	NA
C-285 Copper Extrusion Tank 4 Measured Concentration	NA	NA	NA	NA	NA	NA	NA	NA
C-285 Copper Extrusion Tank 5 (Pickling Rinse)	NA	NA	NA	NA	NA	NA	NA	NA
C-285 Copper Extrusion Tank 5	NA	NA	NA	NA	NA	NA	NA	NA
C-285 Copper Extrusion Tank 6 (Pickling Bath)	23.6	136.87	17.70	173.45	82.59	NA	1,642	NA
C-285 Copper Extrusion Tank 6 Measured Concentration	<0.007	1.2	<0.04	<0.01	0.039	NA	<5	<0.01
C-285 Cooling Water Tank (Copper Extrusion) Allowable Concentrations	0.180	1.001	0.130	1.001	0.500	NA	12	NA
C-285 Cooling Water Tank Measured Concentrations ² 40CFR136 Preservation and Analytical I	<0.007	1.2	<0.04	< 0.01	0.039	NA	<5	<0.01

¹ Listed as daily maximum and monthly average respectively ² Volume composite sample taken for all tanks

CK ONE: CYANIDE ANALYSIS ATTACHED	CYANIDE CERTIFICATION PROVIDED BELOW (September SAR Only)
standards, I certify that to the best of my knowledge which are regulated by the Aluminum Forming (40	ry of the person or persons directly responsible for managing compliance with pretreatment e, cyanide has not been used or generated and will not be used or generated in our processes CFR 467.35) categorical pretreatment standards since analyzing the first wastewater sample r; and that the results of the first analysis contained less than 0.07 mg/l cyanide.
	(Typed Name)
	(Corporate Officer or authorized representative
	Date of Signature
CK ONE: REQUIRED TOXIC ORGANIC ANALYSIS	ATTACHED ☑ O&G ANALYSIS ATTACHED
	alternative monitoring procedure for pretreatment, the POTW user may measure and limit lieu of measuring and regulating total toxic organics (TTO).
	ORATE ACKNOWLEDGEMENT (Optional)
CORPO STATE OF ARKANSAS COUNTY OF MISSISSIPPI	ORATE ACKNOWLEDGEMENT (Optional)
STATE OF ARKANSAS	
STATE OF ARKANSAS COUNTY OF MISSISSIPPI Before me, the undersigned authority, on this day pe	
STATE OF ARKANSAS COUNTY OF MISSISSIPPI Before me, the undersigned authority, on this day per a corporation, known to me to be the person whose acknowledged to me that he executed the same for	ersonally appeared of, name is subscribed to the foregoing instrument(s), and purposes and considerations therein expressed, in the capacity therein stated and as the act
STATE OF ARKANSAS COUNTY OF MISSISSIPPI Before me, the undersigned authority, on this day per a corporation, known to me to be the person whose acknowledged to me that he executed the same for and deed of said corporation.	ersonally appeared of, name is subscribed to the foregoing instrument(s), and purposes and considerations therein expressed, in the capacity therein stated and as the act
STATE OF ARKANSAS COUNTY OF MISSISSIPPI Before me, the undersigned authority, on this day per a corporation, known to me to be the person whose acknowledged to me that he executed the same for and deed of said corporation.	ersonally appeared of


(7) POLLUTION PREVENTION ACT OF 1990 [42 U.S.C. 13101 et seq.]
\$6602 [42 U.S.C. 13101] Findings and Policy para (b) Policy – The Congress hereby declares to be the national policy of the United States that pollution should be prevented or reduced at the source whenever feasible; pollution that cannot be prevented or recycled should be treated in an environmentally safe manner whenever feasible; and disposal or other release into the environmental should be employed only as a last resort and should be conducted in an environmentally safe manner.
The User may list any new or ongoing Pollution Prevention practices:
(8) GENERAL COMMENTS
and the control of t The control of the control of
(9) SIGNATORY REQUIREMENTS [40CFR403.12(1)]
I certify under penalty of law that I have personally examined and am familiar with the information in this semi-annual compliance report and all attachments, and that, based on my inquiry of those persons immediately responsible for obtaining the information contained in the report, I believe that the information is true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.
JOHN RAUSCH NAME OF CORPORATE OFFICER OR AUTHORIZED REPRESENTATIVE OPERATIONS MANAGER (PLANT MANGER) OFFICIAL THE E
OPERATIONS MANAGER (PLANT MANGER) OFFICIAL TITLE DATE SIGNED

ATTACHMENT 1

Flow Schematics

Algonquin Industries

Osceola, Arkansas March 2011

1 stream is not present, show NOT PRESENT or N/P. If a stream is present, the wastewater can enter the POTW but currently has no flow, show 0.0 gpd. If a stream is pre t the wastewater cannot enter the POTW, show Zero Discharge or Z/D. If an unregulated stream is present but the User has decided not to declare it at this time, show N/P.

Signature of §403.12(b) Professional

Date

I certify under penalty of law that I have personally examined and am familiar with the information in this document and that this document was prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Plant Manager or the authorized §403.12(l) official

Date

AGQ Diagram (March 21, 2011)

ATTACHMENT 2

Sampling and Analysis Results

March 26, 2014 Control No. 176554S Page 1 of 5

Algonquin Industries ATTN: Mr. Michael Kelly 1800 Hwy 61 South Osceola, AR 72370

This report replaces American Interplex Corporation (AIC) Control No. 176554 originally sent on March 24, 2014. This report contains the analytical results and supporting information for samples submitted on March 20, 2014. Attached please find a copy of the Chain of Custody and/or other documents received. Note that any remaining sample will be discarded two weeks from the original report date unless other arrangements are made.

This report is intended for the sole use of the client listed above. Assessment of the data requires access to the entire document.

This report has been reviewed by the Laboratory Director or a qualified designee.

Report provided as supplemental to add results for Nickel for Control No. 176554-4 and 176554-5.

Steve Bradford

Deputy Laboratory Director

This document has been distributed to the following:

PDF cc: Algonquin Industries

ATTN: Mr. Michael Kelly mkelly@reawire.com

SAMPLE INFORMATION

Project Description:

Five (5) water sample(s) received on March 20, 2014 POTW DMR

Receipt Details:

A Chain of Custody was provided. The samples were delivered in one (1) ice chest. Ice chest #1 was delivered with shipping documentation.

Each sample container was checked for proper labeling, including date and time sampled. Sample containers were reviewed for proper type, adequate volume, integrity, temperature, preservation, and holding times. Any exceptions are noted below:

Sample Identification:

Laboratory ID	Client Sample ID	Sampled Date/Time	Notes
176554-1	C350 19Mar2014 8:00am	19-Mar-2014 0800	
176554-2	C300 19Mar2014 8:30am	19-Mar-2014 0830	
176554-3	Die 19Mar2014 9:00am	19-Mar-2014 0900	
176554-4	C285 19Mar2014 8:15am	19-Mar-2014 0815	
176554-5	Pond 19Mar2014	19 -M ar-2014	1

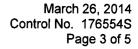
Notes:

1. Sample label was incomplete in regard to date/time of sampling

Case Narrative:

There were no qualifiers for this data and all samples met quality control criteria.

References:


"Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79-020 (Mar 1983) with updates and supplements EPA/600/5-91-010 (Jun 1991), EPA/600/R-92-129 (Aug 1992) and EPA/600/R-93-100 (Aug 1993).

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW846)", Third Edition.

[&]quot;Standard Methods for the Examination of Water and Wastewaters", 21st edition.

[&]quot;American Society for Testing and Materials" (ASTM).

[&]quot;Association of Analytical Chemists" (AOAC).

ANALYTICAL RESULTS

AIC No. 176554-1

Sample Identification: C350 19Mar2014 8:00am

Analyte		Result	RL	Units	Qualifier
Total Cyanide SM 4500-CN C,E 1999	Prep: 20-Mar-2014 1320 by 308	< 0.01 Analyzed: 21-M	0.01 1ar-2014 0819 by 308	mg/l Batch: W47023	
Chromium EPA 200.7	Prep: 20-Mar-2014 1349 by 305	< 0.007 Analyzed: 21-M	0.007 1ar-2014 1321 by 305	mg/l Batch: S36466	
Zinc EPA 200.7	Prep: 20-Mar-2014 1349 by 305	0.015 Analyzed: 21-M	0.002 1ar-2014 1321 by 305	mg/l Batch: S36466	
Oil and Grease EPA 1664A	Prep: 21-Mar-2014 0803 by 295	< 5 Analyzed: 21-M	5 1ar-2014 1107 by 295	mg/l Batch: B8859	

AIC No. 176554-2

Sample Identification: C300 19Mar2014 8:30am

Analyte		Result	RL	Units	Qualifier
Total Cyanide SM 4500-CN C,E 1999	Prep: 20-Mar-2014 1320 by 308	< 0.01 Analyzed: 21-N	0.01 Mar-2014 0821 by 308	mg/l Batch: W47023	
Chromium EPA 200.7	Prep: 20-Mar-2014 1349 by 305	< 0.007 Analyzed: 21-M	0.007 Mar-2014 1325 by 305	mg/l Batch: S36466	
Zinc EPA 200.7	Prep: 20-Mar-2014 1349 by 305	0.039 Analyzed: 21-M	0.002 1ar-2014 1325 by 305	mg/l Batch: S36466	
Oil and Grease EPA 1664A	Prep: 21-Mar-2014 0803 by 295	< 5 Analyzed: 21-M	5 1ar-2014 1107 by 295	mg/l Batch: B8859	

AIC No. 176554-3

Sample Identification: Die 19Mar2014 9:00am

Analyte		Result	RL	Units	Qualifier
Total Cyanide SM 4500-CN C,E 1999	Prep: 20-Mar-2014 1320 by 308	< 0.01 Analyzed: 21-M	0.01 lar-2014 0823 by 308	mg/l Batch: W47023	
Chromium EPA 200.7	Prep: 20-Mar-2014 1349 by 305	0.0081 Analyzed: 21-M	0.007 ar-2014 1329 by 305	mg/l Batch: S36466	
Zinc EPA 200.7	Prep: 20-Mar-2014 1349 by 305	0.20 Analyzed: 21-M	0.002 ar-2014 1329 by 305	mg/l Batch: S36466	
Oil and Grease EPA 1664A	Prep: 21-Mar-2014 0803 by 295	< 5 Analyzed: 21-M	5 ar-2014 1107 by 295	mg/l Batch: B8859	

AIC No. 176554-4

Sample Identification: C285 19Mar2014 8:15am

Analyte		Result	RL	Units	Qualifier
Total Cyanide SM 4500-CN C,E 1999	Prep: 20-Mar-2014 1320 by 308	< 0.01 Analyzed: 21-M	0.01 Mar-2014 0824 by 308	mg/l Batch: W47023	
Chromium EPA 200.7	Prep: 20-Mar-2014 1349 by 305	< 0.007 Analyzed: 21-M	0.007 Mar-2014 1333 by 305	mg/l Batch: S36466	

ANALYTICAL RESULTS

AIC No. 176554-4 (Continued)
Sample Identification: C285 19Mar2014 8:15am

Analyte		Result	RL	Units	Qualifier
Copper EPA 200.7	Prep: 20-Mar-2014 1349 by 305	1.2 Analyzed: 21-Mar-	0.006 2014 1333 by 305	mg/l Batch: S36466	
Lead EPA 200.7	Prep: 20-Mar-2014 1349 by 305	< 0.04 Analyzed: 21-Mar-2	0.04 2014 1333 by 305	mg/l Batch: S36466	
Nickel EPA 200.7	Prep: 20-Mar-2014 1349 by 305	< 0.01 Analyzed: 21-Mar-2	0.01 2014 1333 by 305	mg/l Batch: S36466	
Zinc EPA 200.7	Prep: 20-Mar-2014 1349 by 305	0.039 Analyzed: 21-Mar-2	0.002 2014 1333 by 305	mg/l Batch: S36466	
Oil and Grease EPA 1664A	Prep: 21-Mar-2014 0803 by 295	< 5 Analyzed: 21-Mar-2	5 2014 1107 by 295	mg/l Batch: B8859	

AIC No. 176554-5

Sample Identification: Pond 19Mar2014

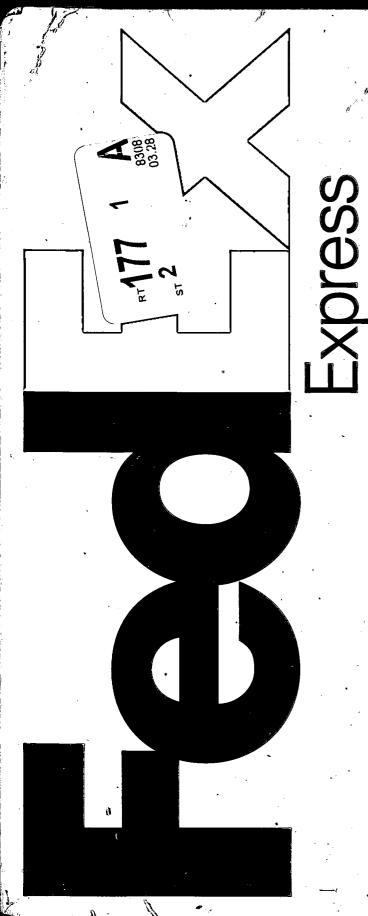
Analyte		Result	RL	Units	Qualifier
Total Cyanide SM 4500-CN C,E 1999	Prep: 20-Mar-2014 1320 by 308	< 0.01 Analyzed: 21-Ma	0.01 ar-2014 0826 by 308	mg/l Batch: W47023	
Chromium EPA 200.7	Prep: 20-Mar-2014 1349 by 305	< 0.007 Analyzed: 21-Ma	0.007 ar-2014 1336 by 305	mg/l Batch: S36466	
Copper EPA 200.7	Prep: 20-Mar-2014 1349 by 305	0.31 Analyzed: 21-Ma	0.006 ar-2014 1336 by 305	mg/l Batch: S36466	
Lead EPA 200.7	Prep: 20-Mar-2014 1349 by 305	< 0.04 Analyzed: 21-Ma	0.04 ar-2014 1336 by 305	mg/l Batch: \$36466	
Nickel EPA 200.7	Prep: 20-Mar-2014 1349 by 305	< 0.01 Analyzed: 21-Ma	0.01 ar-2014 1336 by 305	mg/l Batch: S36466	
Zinc EPA 200.7	Prep: 20-Mar-2014 1349 by 305	0.059 Analyzed: 21-Ma	0.002 nr-2014 1336 by 305	mg/l Batch: S36466	
Oil and Grease EPA 1664A	Prep: 21-Mar-2014 0803 by 295	< 5 Analyzed: 21-Ma	5 ar-2014 1107 by 295	mg/l Batch: B8859	

LABORATORY CONTROL SAMPLE RESULTS

Analyte	Spike Amount	%	Limits	RPD	Limit	Batch	Preparation Date	Analysis Date	Dil	Qual
Total Cyanide	0.1 mg/l	108	85.0-115			W47023	20Mar14 1321 by 308	21Mar14 0811 by 308		
Chromium	0.5 mg/l	101	85.0-115			S36466	20Mar14 1349 by 305	21Mar14 1227 by 305		
Copper	0.5 mg/l	98.2	85.0-115			S36466	20Mar14 1349 by 305	21Mar14 1227 by 305		
Lead	5 mg/l	103	85.0-115			S36466	20Mar14 1349 by 305	21Mar14 1227 by 305		
Nickel	0.5 mg/l	104	85.0-115			S36466	20Mar14 1349 by 305	21Mar14 1227 by 305		
Zinc	0.5 mg/l	102	85.0-115			S36466	20Mar14 1349 by 305	21Mar14 1227 by 305		
Oil and Grease	40 mg/l	107	78.0-114			B8859	21Mar14 0804 by 295	21Mar14 1107 by 295		
	40 mg/l	105	78.0-114	1.89	20.0	B8859	21Mar14 0804 by 295	21Mar14 1107 by 295		

MATRIX SPIKE SAMPLE RESULTS

Analyte	Spike Sample Amount	%	Limits	Batch	Preparation Date	Analysis Date	Dil	Qual
Total Cyanide	176559-2 0.1 mg/l 176559-2 0.1 mg/l Relative Percent Difference:	102 103 0.378	75.0-125 75.0-125 20.0	W47023 W47023 W47023	20Mar14 1321 by 308 20Mar14 1321 by 308	21Mar14 0815 by 308		<u> </u>
Chromium	176232-2 0.5 mg/l 176232-2 0.5 mg/l Relative Percent Difference:	102 103 0.638	75.0-125 75.0-125 20.0	S36466 S36466 S36466	20Mar14 1349 by 305 20Mar14 1349 by 305	21Mar14 1230 by 305 21Mar14 1234 by 305		
Copper	176232-2 0.5 mg/l 176232-2 0.5 mg/l Relative Percent Difference:	99.3 99.3 0.0762	75.0-125 75.0-125 20.0	S36466 S36466 S36466	20Mar14 1349 by 305 20Mar14 1349 by 305	21Mar14 1230 by 305 21Mar14 1234 by 305		
Lead	176232-2 5 mg/l 176232-2 5 mg/l Relative Percent Difference:	105 105 0.841	75.0-125 75.0-125 20.0	S36466 S36466 S36466	20Mar14 1349 by 305 20Mar14 1349 by 305	21Mar14 1230 by 305 21Mar14 1234 by 305		
Nickel	176232-2 0.5 mg/l 176232-2 0.5 mg/l Relative Percent Difference:	105 105 0.539	75.0-125 75.0-125 20.0	S36466 S36466 S36466	20Mar14 1349 by 305 20Mar14 1349 by 305	21Mar14 1230 by 305 21Mar14 1234 by 305		
Zinc	176232-2 0.5 mg/l 176232-2 0.5 mg/l Relative Percent Difference:	101 102 0.546	75.0-125 75.0-125 20.0	S36466 S36466 S36466	20Mar14 1349 by 305 20Mar14 1349 by 305	21Mar14 1230 by 305 21Mar14 1234 by 305		


LABORATORY BLANK RESULTS

Analyte	Result	RL	PQL	QC Sample	Preparation Date	Analysis Date	Qual
Total Cyanide	< 0.01 mg/l	0.01	0.01	W47023-1		21Mar14 0809 by 308	
Chromium	< 0.007 mg/l	0.007	0.007	S36466-1	20Mar14 1349 by 305	21Mar14 1223 by 305	
Copper	< 0.006 mg/l	0.006	0.006	S36466-1	20Mar14 1349 by 305	21Mar14 1223 by 305	
Lead	< 0.04 mg/l	0.04	0.04	S36466-1	20Mar14 1349 by 305	21Mar14 1223 by 305	
Nickel	< 0.01 mg/l	0.01	0.01	S36466-1	20Mar14 1349 by 305	21Mar14 1223 by 305	
Zinc	< 0.002 mg/l	0.002	0.002	S36466-1	20Mar14 1349 by 305	21Mar14 1223 by 305	
Oil and Grease	< 2 mg/l	2	5	B8859-1	21Mar14 0804 by 295	21Mar14 1107 by 295	

CHAIN OF CUSTODY / ANALYSIS REQUEST FORM

	i2 ni.	111:60		7	PO	No.	NO	.		!									PAGE	OF	1
Client NEW MUNE (Hamquin						140.	OF	-	T	\	ANA	LYSE T	SRE	<u>QUES</u>	TED'					NTROL	
Reference: POTW DMR					SAMPLE		٠,	Cyand	一つ	15	ł				1 1	ſ	1		AIC PRO	BOSAL	NO:
Project //, -/ //						MATRIX		2	12	; - -	1					ĺ	ł		·		
					W	i ,	·] ⊤	a.	120	20			1 .		.] •			Carrier:/T	racking N	lo
Ву:	Bobby Hill	/Ron Hastings	G	CO	T	S	ַן	0	0	. [1	1		- 1	ſ	1			rature C
AIC No.	Sample /	Date/Time	A	М	E		E	ĺ	D \$ (1	1		1		1 1	١.			<u> </u>	0.6.C	
140.		Collected	B	P	R	<u> </u>	<u>s</u>	-	12,	ļ				1	$\perp \perp$		_1	1	} .	Remark	· c
Ш.	C350	19 Mar 2014 900 am	X		×		3	X	1 1	1	1 1		1				\top	T	Time	8:00	<u> </u>
2	C 300		X		X		3	X	K	T —				1	1-1-		_	+	 		
>	Die		X		X		_	 	 	-	├		 		 -		-	- 	<u></u>	8:30)an
-2		 	X				3	X	×				1				ł	1	1	9:00	
4	CZ85			_X	X		3	X	×	X			l					7		8:15	
5	Pond	Í	X		X		3	X	K	X	1				 		┿-	 		8-13	an
							-		 						 -		 	<u> </u>			
				_			-							} ,			1	1'	ľ		
				ļ	- [1 1											1.			
	•	Container Type					1	-				-,						 	Field pH c		
		Preservative	[on Buffer:	@_	— <u> </u>
- 1	G = Gla NO = no						VOA			,I,	F	1 = H	CI to p	H2			T=S		Thiosulfat	<u> </u>	
UCRare	und Time Requeste	d: (Please circle)	ic aci	о рн	2	N =	Nitric	acid p	H2			= NaOH to pH12					Z = Z	inc ac	etate	•	1
NORN	MALJOR EXPEDITE	DIN DAYS						Reind Bv: /	ļuisne: }₄ •:	a		, [Date/	Time Mar	2014	Rece	Received Date/Time			e	
xpedited results requested by:							. [Relinquished By: Michael K			<u>//e//</u>	lelly Date/Time 19 Mar 2014					Ву:			j	
Nho should AIC contact with questions: Phone:Fax:							. յ։	Relinquished /				Date/Time				Rece	ived in	Lab	ab Date/fime 3-30-14		
Report Attention to:							'	By:							Ву:	/	11	آ سر			
Report Address to:							la	omm	ents:						··	1	yel	<u>-#7</u>	on	094	<u> </u>
1							i	· . · .													
	19-Oct-09				-				-												ļ
•					•				•			12	. 71	977	0193	1923	90		F	ORM 006	3 0

From: (870) 622-4413 John Rausch

Rea Algonquin Industries 1800 S US Highway 61

Osceola, AR 72370


Origin ID: JBRA

SHIP TO: (501) 682-0625 **BILL SENDER** Mr. Allen Gilliam

Ar Dept of Environmental Quality 5301 Northshore Drive

NORTH LITTLE ROCK, AR 72118

Ship Date: 27MAR14 ActWgt: 0.5 LB CAD: 102379368/INET3490

Delivery Address Bar Code

Ref#

Invoice # PO # Dept #

FRI - 28 MAR AA STANDARD OVERNIGHT

X2 LITA

7983 5355 8308

72118 AR-US LIT

The World On Time.

Envelope

Align bottom of Peel and Stick Airbill or Pouch here.